
R Integration Pack
User Guide

Version: 10.8

10.8, May 2017
Copyright © 2017 by MicroStrategy Incorporated. All rights reserved.

If you have not executed a written or electronic agreement with MicroStrategy or any authorized MicroStrategy distributor (any such agreement, a
"Separate Agreement"), the following terms apply:

This software and documentation are the proprietary and confidential information of MicroStrategy Incorporated and may not be provided to any other person. Copyright ©
2001-2017 by MicroStrategy Incorporated. All rights reserved.

THIS SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” ANDWITHOUT EXPRESSOR LIMITED WARRANTY OF ANY KIND BY EITHER MICROSTRATEGY
INCORPORATED OR ANYONEWHO HASBEEN INVOLVED IN THE CREATION, PRODUCTION, OR DISTRIBUTION OF THE SOFTWARE OR DOCUMENTATION,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIESOF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE AND
NONINFRINGMENT, QUALITY OR ACCURACY. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE AND DOCUMENTATION ISWITH
YOU. SHOULD THE SOFTWARE OR DOCUMENTATION PROVE DEFECTIVE, YOU (AND NOT MICROSTRATEGY, INC. OR ANYONE ELSEWHO HASBEEN INVOLVED
WITH THE CREATION, PRODUCTION, OR DISTRIBUTION OF THE SOFTWARE OR DOCUMENTATION) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION. SOME STATESDO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONMAY NOT APPLY TO YOU.

In no event will MicroStrategy, Incorporated. or any other person involved with the creation, production, or distribution of the Software be liable to you on account of any claim
for damage, including any lost profits, lost savings, or other special, incidental, consequential, or exemplary damages, including but not limited to any damages assessed against
or paid by you to any third party, arising from the use, inability to use, quality, or performance of such Software and Documentation, even if MicroStrategy, Inc. or any such
other person or entity has been advised of the possibility of such damages, or for the claim by any other party. In addition, MicroStrategy, Inc. or any other person involved in
the creation, production, or distribution of the Software shall not be liable for any claim by you or any other party for damages arising from the use, inability to use, quality, or
performance of such Software and Documentation, based upon principles of contract warranty, negligence, strict liability for the negligence of indemnity or contribution, the
failure of any remedy to achieve its essential purpose, or otherwise. The entire liability of MicroStrategy, Inc. and your exclusive remedy, shall not exceed, at the option of
MicroStrategy, Inc., either a full refund of the price paid, or replacement of the Software. No oral or written information given out expands the liability of MicroStrategy, Inc.
beyond that specified in the above limitation of liability. Some states do not allow the limitation or exclusion of liability for incidental or consequential damages, so the above
limitation may not apply to you.

The information contained in thismanual (the Documentation) and the Software are copyrighted and all rights are reserved by MicroStrategy, Inc. MicroStrategy, Inc. reserves
the right to make periodic modifications to the Software or the Documentation without obligation to notify any person or entity of such revision. Copying, duplicating, selling, or
otherwise distributing any part of the Software or Documentation without prior written consent of an authorized representative of MicroStrategy, Inc. are prohibited. U.S.
Government Restricted Rights. It is acknowledged that the Software and Documentation were developed at private expense, that no part is public domain, and that the
Software and Documentation are Commercial Computer Software provided with RESTRICTED RIGHTS under Federal Acquisition Regulations and agency supplements to
them. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFAR 252.227-7013 et. seq. or subparagraphs (c)(1) and (2) of the Commercial Computer Software-Restricted Rights at FAR 52.227-19, as applicable.
Contractor isMicroStrategy, Incorporated., 1850 Towers Crescent Plaza, Tysons Corner, VA 22182. Rights are reserved under copyright laws of the United States with respect to
unpublished portions of the Software.

The following terms and notices apply regardless of whether you have executed a Separate Agreement:

Trademark Information

The following are either trademarks or registered trademarks of MicroStrategy Incorporated or its affiliates in the United States and certain other countries:

MicroStrategy, MicroStrategy 10, MicroStrategy 10 Secure Enterprise, MicroStrategy 9, MicroStrategy 9s, MicroStrategy Analytics, MicroStrategy Analytics Platform, MicroStrategy
Desktop, MicroStrategy OperationsManager, MicroStrategy Analytics Enterprise, MicroStrategy Evaluation Edition, MicroStrategy Secure Enterprise, MicroStrategy Web,
MicroStrategy Mobile, MicroStrategy Server, MicroStrategy Parallel Relational In-Memory Engine (MicroStrategy PRIME), MicroStrategy MultiSource, MicroStrategy OLAP
Services, MicroStrategy Intelligence Server, MicroStrategy Intelligence Server Universal, MicroStrategy Distribution Services, MicroStrategy Report Services, MicroStrategy
Transaction Services, MicroStrategy Visual Insight, MicroStrategy WebReporter, MicroStrategy Web Analyst, MicroStrategy Office, MicroStrategy Data Mining Services,
MicroStrategy Narrowcast Server, MicroStrategy Health Center, MicroStrategy Analyst, MicroStrategy Developer, MicroStrategy Web Professional, MicroStrategy Architect,
MicroStrategy SDK, MicroStrategy Command Manager, MicroStrategy Enterprise Manager, MicroStrategy Object Manager, MicroStrategy Integrity Manager, MicroStrategy
System Manager, MicroStrategy Analytics App, MicroStrategy Mobile App, MicroStrategy Tech Support App, MicroStrategy Mobile App Platform, MicroStrategy Cloud,
MicroStrategy R Integration, Dossier, Usher, MicroStrategy Usher, Usher Badge, Usher Security, Usher Security Server, Usher Mobile, Usher Analytics, Usher NetworkManager,
Usher Professional, MicroStrategy Services, MicroStrategy Professional Services, MicroStrategy Consulting, MicroStrategy Customer Services, MicroStrategy Education,
MicroStrategy University, MicroStrategy Managed Services, BI QuickStrike, Mobile QuickStrike, Transaction Services QuickStrike Perennial Education Pass, MicroStrategy Web
Based Training (WBT), MicroStrategy World, Best in Business Intelligence, Pixel Perfect, Global Delivery Center, Direct Connect, Enterprise Grade Security For Every Business,
Build Your Own Business Apps, Code-Free, Welcome to Ideal, The World’sMost Comprehensive Analytics Platform, The World’sMost Comprehensive Analytics Platform.
Period.

Other product and company namesmentioned herein may be the trademarks of their respective owners.

Specifications subject to change without notice. MicroStrategy is not responsible for errors or omissions. MicroStrategy makes no warranties or commitments concerning the
availability of future products or versions that may be planned or under development.

Patent Information

This product is patented. One or more of the following patentsmay apply to the product sold herein: U.S. Patent Nos. 6,154,766, 6,173,310, 6,260,050, 6,263,051, 6,269,393,
6,279,033, 6,567,796, 6,587,547, 6,606,596, 6,658,093, 6,658,432, 6,662,195, 6,671,715, 6,691,100, 6,694,316, 6,697,808, 6,704,723, 6,741,980, 6,765,997, 6,768,788,
6,772,137, 6,788,768, 6,798,867, 6,801,910, 6,820,073, 6,829,334, 6,836,537, 6,850,603, 6,859,798, 6,873,693, 6,885,734, 6,940,953, 6,964,012, 6,977,992, 6,996,568,
6,996,569, 7,003,512, 7,010,518, 7,016,480, 7,020,251, 7,039,165, 7,082,422, 7,113,993, 7,127,403, 7,174,349, 7,181,417, 7,194,457, 7,197,461, 7,228,303, 7,260,577, 7,266,181,
7,272,212, 7,302,639, 7,324,942, 7,330,847, 7,340,040, 7,356,758, 7,356,840, 7,415,438, 7,428,302, 7,430,562, 7,440,898, 7,486,780, 7,509,671, 7,516,181, 7,559,048, 7,574,376,
7,617,201, 7,725,811, 7,801,967, 7,836,178, 7,861,161, 7,861,253, 7,881,443, 7,925,616, 7,945,584, 7,970,782, 8,005,870, 8,051,168, 8,051,369, 8,094,788, 8,130,918, 8,296,287,
8,321,411, 8,452,755, 8,521,733, 8,522,192, 8,577,902, 8,606,813, 8,607,138, 8,645,313, 8,761,659, 8,775,807, 8,782,083, 8,812,490, 8,832,588, 8,943,044, 8,943,187. 8,958,537,
8,966,597, 8,983,440, 8,984,274, 8,984,288, 8,995,628, 9,027,099, 9,027,105, 9,037, 577, 9,038,152, 9,076,006, 9,086,837, 9,116,954, 9,124,630, 9,154,303, 9,154,486,
9,160,727, 9,166,986, 9,171,073, 9,172,699, 9,173,101, 9,183, 317, 9,195,814, 9,208,213, 9,208,444, 9,262,481, 9,264,415, 9,264,480, 9,269,358, 9,275,127, 9,292,571, 9,300,646,
9,311,683 9,313,206, 9,330,174, 9,338,157, 9,361,392, 9,378,386, 9,386,416, 9,391,782, 9,397,838, 9,397,980, 9,405,804, 9,413,710, 9,413,794, 9,430,629, 9,432,808, 9,438,597,
9,444,805, 9,450,942, 9,450,958, 9,454,594, 9,507,755, 9,513,770, 9,516,018, 9,529,850, 9,563,761, 9,565,175, 9,608,970, 9,640,001, and 9,646,165. Other patent applications
are pending.

Third Party Software

VariousMicroStrategy products contain the copyrighted technology or software of third parties ("Third Party Software"). Your use of MicroStrategy products is subject to all
applicable terms and conditions associated with any such Third Party Software

Datalogics, Inc.

Copyright 2000-2017 Datalogics, Inc.
Copyright 1984-2017 Adobe Systems Incorporated and its licensors. All rights reserved
Adobe®, Adobe® PDF Library™, and The Adobe Logo® are trademarks of Adobe Systems Incorporated.

CONTENTS
1. Overview of the R Integration Pack 4

2. Installing and Configuring the R Integration Pack 6
Installing MicroStrategy products 7
Installing R 9
Installing the RScript functions 10
UpgradingMicroStrategy Analytics Enterprise projects 13

3. Performing statistical analysis 15
Retrieving the metric expression 16
Making the R script available 16
Including the R script in a metric 17

4. Developing R Analytics for MicroStrategy 20
Installing the MicroStrategyR Package for R 21
Implementing the analytic in R for use in MicroStrategy 22
Best practices: Making the R script robust 24
Preparing your analytic for MicroStrategy: the deployR utility 37

5. Troubleshooting 43
Locating error messages 43
Troubleshooting your installation 44
Troubleshooting the development of R scripts 45
Troubleshooting R integration in MicroStrategy 49

Index 53

© 2017, MicroStrategy Inc. 3

1
OVERVIEW OF THE R
INTEGRATION PACK

The MicroStrategy R Integration Pack lets you easily integrate statistical computing and
graphics environments into MicroStrategy by deploying R analytics as standard
MicroStrategy metrics that implement R scripts. R is an open-source, industry-leading
language and environment for statistical computing and graphics. A MicroStrategy
metric is a calculation that represents a business measure or key performance indicator,
in this case, the R analysis. Metrics can be used directly on MicroStrategy reports,
documents, and dashboards.

For example, you can project a seasonal forecast of revenue, as shown in the following
dashboard. The R analytics have been deployed as the metrics Seasonal Forecast and
Seasonal Forecast (No Outliers).

Because the R Integration Pack deploys R analytics as MicroStrategy metrics,
deployment and management is easy. Additionally, the R Integration Pack includes a set

© 2017, MicroStrategy Inc. 4

R Integration Pack User Guide

5 © 2017, MicroStrategy Inc.

of common R script functions, pre-compiled and ready to integrate into any
MicroStrategy project.

Depending on your role, you perform one or more the following tasks to integrate or use
your MicroStrategy software with R:

• If you are a system administrator, install the R Integration Pack for R developers and
MicroStrategy users.

For detailed information on preparing your environments, and steps to install the R
Integration Pack, see Chapter 2, Installing and Configuring the R Integration Pack.

• If you are a MicroStrategy analyst, use R analytics to analyze data. With the R
Integration Pack installed and R analytics integrated with MicroStrategy, you can
begin to analyze the R analytic statistical information in MicroStrategy by creating a
metric. For detailed steps to create a metric that uses your R analytics, see Chapter 3,
Performing statistical analysis.

• If you are an R developer, install the MicroStrategyR package, and develop your R
analytics. An R analytic is a statistical analysis function that you write in R. To allow
users to perform statistical analysis with an R analytic, you must implement the
analytic as an R script, and integrate it with MicroStrategy using the deployR utility.

For detailed steps and best practices to create R analytics for use in MicroStrategy,
see Chapter 4, Developing R Analytics for MicroStrategy.

• The MicroStrategy R Integration Pack returns error and warning messages to help
troubleshoot potential issues. Once you receive an error message you can search for
it within Chapter 5, Troubleshooting, which provides a potential cause and
resolution to the problem.

2
INSTALLING AND
CONFIGURING THE R
INTEGRATION PACK

To integrate R analytics with MicroStrategy offerings such as MicroStrategy Analytics
Enterprise and MicroStrategy Desktop, you must install and configure the necessary R
Integration Pack software.

The R Integration Pack consists of the following components:

• RScript Functions: A set of functions that are added to a MicroStrategy project to
allow MicroStrategy metrics use your R analytics.

• MicroStrategyR Package for R: A package that contains an R-based utility
called deployR, which prepares your R analytics for use in MicroStrategy metrics.
The MicroStrategyR Package is only required on systems that are being used to
develop your R analytics. For detailed steps to install the MicroStrategyR Package,
see Chapter 4, Developing R Analytics for MicroStrategy.

The following figure provides a high-level summary of the tasks you perform to install
the R Integration Pack.

© 2017, MicroStrategy Inc. 6

R Integration Pack User Guide

7 © 2017, MicroStrategy Inc.

Perform the following steps to install and configure the R Integration Pack environment:

1 Installing MicroStrategy products, page 7

2 Installing R, page 9

3 Installing the RScript functions, page 10

4 Upgrading MicroStrategy Analytics Enterprise projects, page 13

Installing MicroStrategy products
Before installing the R Integration Pack, you must install and configure the supported
MicroStrategy products. You can integrate R analytics with the following MicroStrategy
products:

• MicroStrategy Analytics Enterprise: MicroStrategy version 9.2.1 or later must
be installed. If installing with MicroStrategy 9.x, MicroStrategy Architect is necessary
for the one-time addition of the common R script functions.

Additional requirements include:

▫ To support deploying a new R analytic as a derived metric, you must have
MicroStrategy OLAP Services to create derived metrics.

A derived metric is based on the existing metrics in the report, document, or
dashboard; therefore, the derived metric can only be used in that report,
document, or dashboard.

▫ To support deploying a new R analytic as a derived metric in a dashboard,
MicroStrategy version 9.3.1 or later must be installed.

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 8

▫ To create metrics using the R script functions, you must have the MicroStrategy
Developer or MicroStrategy Web Designer privilege. Any user can view and
analyze the results of metrics that employ the R script functions.

As of MicroStrategy version 9.4.1, the name of MicroStrategy Desktop has
been changed to MicroStrategy Developer.

• MicroStrategy Desktop: MicroStrategy Desktop version 9.4.1.3 or later must be
installed. There are no MicroStrategy privileges required to create, view, or analyze
metrics that employ R script functions.

• When migrating your MicroStrategy 9.x environment to a new major version
(excludes hotfix and service packs), you must first uninstall the R Integration Pack.
After the new MicroStrategy version is installed, re-install the R Integration Pack as
described in Installing the RScript functions, page 10.

Creating centralized repositories for R files
To perform and display the statistical analysis you create using R, MicroStrategy products
require access to the R script (.R) files, as well as any images made in R that are
included in a MicroStrategy dashboard or document.

For the single-user MicroStrategy Desktop product, these files can be stored on the same
machine as MicroStrategy Desktop.

For MicroStrategy Analytics Enterprise, creating centralized repositories for these files
provides a single location that can be used across the enterprise. To create these
repositories, see:

• Creating a centralized repository for R script files , page 8

• Creating a repository for R images, page 8

Creating a centralized repository for R script files

When performing analysis of your R statistics from MicroStrategy, a MicroStrategy
metric must have access to the R script (.R) file. These R script files can be stored in the
default R scripts folder that is created when installing the R Integration Pack. This
provides a simple centralized repository for your R script files and allows for a quick
configuration.

To provide a single network location where all R script files can be stored and accessed,
MicroStrategy recommends that you save the R script files on a shared drive that all
MicroStrategy products, including Intelligence Server and MicroStrategy Developer, can
use and access. The shared drive can then be made available as a local path defined in the
_WorkingDir parameter or the directory defined in the registry key
RScriptsFolder.

Creating a repository for R images

To use images made in R in a MicroStrategy dashboard or document, you must save the
images in a location accessible by the MicroStrategy platform.

R Integration Pack User Guide

9 © 2017, MicroStrategy Inc.

MicroStrategy recommends that you save the image file on a web server that all your
MicroStrategy products, including Intelligence Server, can use and access. When you add
the image to a document or dashboard, use an HTTP reference to that accessible web
server machine, such as http://microstrategy/Test/myimage.jpg.

If your system cannot support accessing a central web server using the HTTP syntax
because of permissions or other access issues, you can save the image on a shared
network drive or within the MicroStrategy product you are using. For information on
storing images on shared network drives or within the MicroStrategy product, see the
Document Creation Guide .

Installing R
Before installing the R Integration Pack, you must ensure that your environments have R
and its dependencies installed. The following configurations are required when installing
R for MicroStrategy environments:

• You must install R version 3.x or later. The proper version of R must be installed
from http://CRAN.R-project.org:

▫ Windows: When installing R, keep the default option to install both the 32-bit
and 64-bit version of R.

▫ Unix and Linux: The 64-bit version of R is required. You must also, ensure that
libR.so is included in the R environment. You can define this support by
running the following command for your R environment:

./configure --enable-R-shlib

If an R 3.x installation is not available from http://CRAN.R-project.org for
your version of Linux, third-party tools such as the Yellowdog Updated,
Modified (Yum) and Extra Packages for Enterprise Linux (EPEL) can be
used to install and update your R installation. Refer to your third-party R
documentation available at http://www.r-project.org/ for information on
installing and updating R.

• R and any dependencies must be installed on systems that will execute the R
analytics deployed to MicroStrategy. These dependencies include any add-on
packages that are required for a given R analytic. R and any dependencies must be
installed on the following systems:

• If you are using MicroStrategy Analytics Enterprise:

▫ MicroStrategy Intelligence Server host machine, which supports R
analytic execution for MicroStrategy Web, MicroStrategy Mobile,
MicroStrategy Visual Insight, and MicroStrategy Office.

Intelligence Server also supports R analytic execution with stand-alone
metrics for MicroStrategy Developer clients that are connected in server
(three-tier) mode.

▫ MicroStrategy Developer clients that execute R analytics as derived
metrics or in direct (two-tier) mode.

https://www2.microstrategy.com/producthelp/10.8/DocCreationGuide/WebHelp/Lang_1033/index.htm
http://cran.r-project.org/
http://cran.r-project.org/
http://www.r-project.org/

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 10

• If you are using MicroStrategy Desktop:

▫ MicroStrategy Desktop machine that executes deployed R analytics.
For MicroStrategy Desktop configurations, this is the only machine that
must include the R dependencies.

Installing the RScript functions
The R Script Functions are a set of common functions and supporting files that are
added to a MicroStrategy project, which allow MicroStrategy metrics to pass an R script
and its associated inputs to R for execution. Metrics using these common R script
functions also return the results from R for display and analysis in MicroStrategy reports,
documents, and dashboards.

The RScript functions must be installed on the following systems:

• If you are using MicroStrategy Desktop, the machine that has MicroStrategy Desktop
installed.

• If you are using MicroStrategy Analytics Enterprise:

▫ The MicroStrategy Intelligence Server machine.

▫ If your users need to execute R analytics as derived metrics in MicroStrategy
Developer, or in direct (two-tier) mode, the MicroStrategy Developer machine.

The required installation files can be downloaded from the Downloads tab at
http://RIntegrationPack.codeplex.com. Depending on your platform, use one of the
following procedures to complete the installation:

• Installing on Windows, page 10

• Installing on UNIX and Linux, page 11

Installing on Windows
The steps below show you how to use the RScript Functions Installer to install the R
script functions on a Windows environment for MicroStrategy Analytics Enterprise and
MicroStrategy Desktop.

Prerequisite

• To successfully complete the installation, you must execute the installation using an
account with administrative privileges or choose to execute the installation as an
administrator.

To install the R script functions on Windows

1 Access the site http://RIntegrationPack.codeplex.com.

2 From the Downloads tab, locate and download the RIntegrationPack.msi file.

http://rintegrationpack.codeplex.com/
http://rintegrationpack.codeplex.com/

R Integration Pack User Guide

11 © 2017, MicroStrategy Inc.

3 Double-click RintegrationPack.msi to execute the file and begin the installation
process. The installation wizard is displayed.

4 Complete the steps provided in the installation wizard. By default, the installation
location is:

• 32-bit Windows environments: C:\Program Files\R Integration Pack

• 64-bit Windows environments: C:\Program Files
(x86)\R Integration Pack

The following files and folders are available after the installation:

• ReadMe.txt: Includes what’s new information as well as important support
and configuration information such as upgrade considerations.

• Documentation: The folder location of this documentation, in PDF format.

• RScripts: The default folder location for R scripts (.R files) deployed to
MicroStrategy. The sample R script referenced later in this guide can be found in
this folder.

5 When installation is complete, ensure that the R script functions are available for the
environment as described below:

• MicroStrategy Analytics Enterprise:

▫ For existing projects, the R script functions may need to be added to the
projects’ metadata or upgraded. For steps to add or upgrade R script
functions for existing projects, see Upgrading MicroStrategy Analytics
Enterprise projects, page 13.

▫ For projects created after the R script functions are installed, the R script
functions are automatically added to these newly created projects. The R
script functions are added to the list of Data Mining Functions available
when creating metrics, including the functions RScript, RScriptU,
RScriptAgg, RScriptAggU, and RScriptSimple.

• MicroStrategy Desktop:

▫ The R script functions are included with the standard installation of
MicroStrategy Desktop. The functions RScript, RScriptU, RScriptAgg,
RScriptAggU, and RScriptSimple are included in the list of Data
Mining Functions, available when creating metrics.

Installing on UNIX and Linux
The steps below show you how to use the RScript Functions Installer to install the R
script functions on a UNIX or Linux environment for MicroStrategy Analytics
Enterprise.

To install the R script functions on UNIX or Linux

1 Access the site http://RIntegrationPack.codeplex.com.

http://rintegrationpack.codeplex.com/

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 12

2 From the Downloads tab, click one of the following options:

• AIX Installer: Downloads RintegrationPack_AIX.tar.gz, for
installation on AIX.

• Linux Installer: Downloads RintegrationPack_Linux.tar.gz, for
installation on Linux.

• SunOS Installer: Downloads RintegrationPack_SunOS.tar.gz, for
installation on Solaris.

3 Extract the installation files, using the following command:

tar -zxvf RintegrationPack_OS.tar.gz

Where OS is the operating system that you are installing to.

4 Navigate to the new RIntegrationPack_OS folder, where OS is the operating
system that you are installing to.

5 You must execute the RScript Functions Installer with the same user account that
executed the MicroStrategy software installation for the system. This ensures that
the R script function files are installed to the required MicroStrategy installation
folder location.

You can complete the installation using an interface or through command line
mode:

• To use the installation wizard interface, type and execute the following
command:

setup.sh

• To use the command line mode, type and execute the following command:

setup.sh -console

6 Complete the steps provided in the installation wizard. By default, the installation
location is /var/opt/R_Integration_Pack, or $HOME/R_Integration_
Pack if you do not have write access to /var/opt/R_Integration_Pack. The
following files and folders are available after completing the installation:

• ReadMe.txt: Includes what’s new information as well as important support
and configuration information such as upgrade considerations.

• Documentation: The folder location of this documentation, in PDF format.

• RScripts: The default folder location for R scripts (.R files) deployed to
MicroStrategy. The sample R script referenced later can be found in this folder.

• uninstall: Includes the file uninstall.sh, which can be used to uninstall the
R Integration Pack.

7 When the installation is complete, ensure that the R script functions are available for
your environment as described below:

• MicroStrategy Analytics Enterprise:

R Integration Pack User Guide

13 © 2017, MicroStrategy Inc.

▫ For existing projects, the R script functions may need to be added to the
projects’ metadata or upgraded. For steps to add or upgrade R script
functions for existing projects, see Upgrading MicroStrategy Analytics
Enterprise projects, page 13.

▫ For projects created after the R script functions are installed, the R script
functions are automatically added to these newly created projects. The R
script functions are added to the list of Data Mining Functions available
when creating metrics, including the functions RScript, RScriptU,
RScriptAgg, RScriptAggU, and RScriptSimple.

Upgrading MicroStrategy Analytics Enterprise
projects

If you have MicroStrategy Analytics Enterprise projects that existed before the
installation of the R script functions, you must upgrade the projects using the
MicroStrategy Configuration Wizard to support the following scenarios:

• If this is the first installation of the R script functions with MicroStrategy 9.x,
upgrading a project adds the R script functions to the project.

• If you upgraded a previous version of the R script functions, upgrading a project
ensures that any changes to the R script functions since your previous installation
are applied to the project. The ReadMe.txt file includes information on whether
the R script functions were modified for the most recent release. If you are
upgrading a version of the R script functions from more than one release prior, it is
recommended to upgrade a project to ensure that any R script function changes are
applied.

For MicroStrategy Desktop configurations, the R script functions are included with the
standard installation of MicroStrategy Desktop.

The steps below show you how to add or upgrade the R script functions for existing
MicroStrategy projects by upgrading the projects.

To add or upgrade R script functions for existing MicroStrategy
Analytics Enterprise projects

1 If you are upgrading MicroStrategy projects on:

• Windows, then perform the following step:

From the Start menu, point to Programs, thenMicroStrategy Tools, and
then choose Configuration Wizard. The Configuration Wizard opens.

• UNIX or Linux using the Configuration Wizard interface, then perform the
following steps:

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 14

a From a UNIX or Linux console window, browse to HOME_PATH, where
HOME_PATH is the directory that you specified as the home directory during
your MicroStrategy installation.

b Browse to the folder bin and type ./mstrcfgwiz, then press ENTER. The
Configuration Wizard opens.

2 Select Upgrade existing environment to MicroStrategy <version>, and
click Next. Options to upgrade your MicroStrategy environment are displayed.

3 Select Intelligence Server Components, and click Next. The MicroStrategy
Authentication page opens.

4 Type the user name and password of a MicroStrategy system administrator, and click
Next. The Select Components to Upgrade page opens.

5 For each project to add the R script functions to, select the Re-execute the
Project Logical Upgrade check box.

6 For the Local Host Intelligence Server, select the Re-execute Metadata
Repository Upgrade check box, and click Next. The Summary page opens.

7 Click Finish to begin the upgrade.

8 When the upgrade is complete, restart any MicroStrategy Intelligence Server that is
connected to the project metadata that was upgraded. The R script functions are
added to the list of Data Mining Functions available when creating metrics, including
the functions RScript, RScriptU, RScriptAgg, RScriptAggU, and
RScriptSimple.

After you have installed the R script functions, the MicroStrategyR Package must be
installed on systems that are being used to develop your R analytics. For detailed steps to
install the MicroStrategyR Package, see Chapter 4, Developing R Analytics for
MicroStrategy.

3
PERFORMING STATISTICAL
ANALYSIS
Creating metrics with R analytics

With the R Integration Pack installed, you can begin to analyze the R analytic statistical
information in MicroStrategy. The following diagram provides a high-level overview of
the steps to use an R analytic in a MicroStrategy metric:

To begin performing R statistical analysis in MicroStrategy, complete the following steps:

1 Retrieving the metric expression, page 16

2 Making the R script available, page 16

3 Including the R script in a metric, page 17

© 2017, MicroStrategy Inc. 15

R Integration Pack User Guide

16 © 2017, MicroStrategy Inc.

Retrieving the metric expression
Once an R script that includes statistical analysis has been processed using the
MicroStrategy deployR utility, it is ready to be integrated into your MicroStrategy
environment.

Creating R scripts using R and processing them using the deployR utility is
described in Chapter 4, Developing R Analytics for MicroStrategy.

To integrate the statistical analysis, you must retrieve the metric expression. You can
open the .R file using a text editor. Within the file, search for the line that begins with
one of the available R script functions, which includes RScript, RScriptU,
RScriptAgg, RScriptAggU, and RScriptSimple.

For example, the SeasonalForecasting.R file included with the R Integration Pack
includes the following metric expression:

RScript<_RScriptFile="SeasonalForecasting.R", _
InputNames="Target, Trend, Season", StringParam9="">
(Target, Trend, Season)

In addition to the SeasonalForecasting.R file included with the R Integration
Pack, MicroStrategy provides example R script files that can be downloaded from the R
script shelf. The metric expressions include comments which need to be removed
manually using a text editor, or the example scripts can be processed using the deployR
utility (see Preparing your analytic for MicroStrategy: the deployR utility, page 37).

This metric expression can then be used to help make the R script available (seeMaking
the R script available, page 16) and finally begin to perform statistical analysis in
MicroStrategy by creating a metric (see Including the R script in a metric, page 17).

Making the R script available
With an R script file and the associated metric expression (see Retrieving the metric
expression, page 16), you are ready to make the R script available to your MicroStrategy
environment. You can determine the required location for the R script based on the _
RScriptFile parameter that is part of the metric expression:

• If the _RScriptFile parameter includes only a file name, the R script must be
stored in the default RScripts folder for the computer. This folder is created when
the R Integration Pack is installed, and the default locations include:

▫ 32-bit Windows environments:
C:\Program Files\R Integration Pack\RScripts

▫ 64-bit Windows environments: C:\Program Files
(x86)\R Integration Pack\RScripts

▫ UNIX and Linux environments: /var/opt/R_Integration_
Pack/RScripts, or $HOME/R_Integration_Pack/RScripts if you do
not have write access to /var/opt/R_Integration_Pack/.

https://rintegrationpack.codeplex.com/wikipage?title=R%20Script%20%22Shelf%22
https://rintegrationpack.codeplex.com/wikipage?title=R%20Script%20%22Shelf%22

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 17

• If the _RScriptFile parameter includes a full path and file name, the R script
must be stored in the path specified.

• To provide a single location where all R scripts can be stored and accessed, see
Creating a centralized repository for R script files , page 8.

Including the R script in a metric
You can begin to analyze the R analytic statistical information in MicroStrategy by
creating a metric. A metric is a calculation that represents a business measure or key
performance indicator, in this case, the R analysis. You can use metrics in reports,
documents, and dashboards.

For example, trend analysis metrics have been created using R analytics. The metrics
have been added to a visualization in a dashboard, as shown below:

The high-level steps for creating a metric and including an R script include:

1 Create a metric using your MicroStrategy product. R scripts can be integrated with all
metrics available with your MicroStrategy products, such as standalone metrics that
can be included in reports and dashboards or derived metrics that are created
directly within a report or dashboard.

For detailed steps to create metrics, click the Help button or ? (question mark) in
your MicroStrategy product to access the MicroStrategy documentation.

2 In the metric editor, paste the metric expression from your R script.

3 Map all of the inputs for the metric expression, which are included in parentheses
and separated by commas at the end of the metric expression, to metrics. Each input

R Integration Pack User Guide

18 © 2017, MicroStrategy Inc.

must map to a single metric. To map an input, replace its name in the expression in
the pane with a metric.

If you are mapping inputs for a derived metric, the metrics that you map to the
inputs must all be included in the report or dashboard.

4 Make any additional changes to the metric and save your metric.

5 If you created a standalone metric, add the metric to a report, document, or
dashboard.

6 Run the report, document, or dashboard to begin your R statistical analysis in
MicroStrategy.

You can add images created using R scripts to a document to display the results of an
analysis, help illustrate a trend, and so on. The image in the document is updated
whenever the script to create the image is run again.

Reviewing and troubleshooting your R analysis
Along with analyzing the statistical data on your MicroStrategy report, document, or
dashboard, you can also review the success or failure of the R script execution.
Depending on whether the R script executed when executing the report, document, or
dashboard that included the R analysis, you can do one of the following:

• Locate the .Rdata file in your working directory, open it, and explore the R
environment that is saved when your function executes. The name of the .Rdata
file is specified in the R script.

• If an error occurred or the metrics for your R script did not return any data, check
the DSSErrors.log and RScriptErrors.log file for information on any errors
detected. The developer of the R script determines what information is included in
these log files, as described in Implementing error handling, page 25.

• When you receive an error message you can search for it within Chapter 5,
Troubleshooting, which provides a potential cause and resolution to the problem.

Adding images made in R to documents and
dashboards
You can add images created using R scripts (see Creating images in R to add to
MicroStrategy documents, page 23) to a document or dashboard to display the results of
an analysis, help illustrate a trend, and so on. The image in the document or dashboard is
updated whenever the R script used to create the image is run again.

Contact your administrator to determine the location used to store images, which must
be accessible by the MicroStrategy platform, as described in Creating a repository for R
images, page 8. When including an R image in a document or dashboard, use this
location as the path to the image. For additional information on including images in
documents and dashboards, such as steps to add a dynamic image to a document, see the
Document Creation Guide.

https://www2.microstrategy.com/producthelp/10.8/DocCreationGuide/WebHelp/Lang_1033/index.htm

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 19

R analysis example
Below is the R script for the forecasting analytic. It is also available as part of the
installation package in the default RScripts folder as a file called
SeasonalForecasting.R. This example explains how to deploy this script with the
MicroStrategy Tutorial project available with MicroStrategy Analytics Enterprise.

The header block for this R script includes the following metric expression information:

#Metric Expression:
RScript<_RScriptFile="SeasonalForecasting.R",
_InputNames="Target, Trend, Season", StringParam9="">
(Target, Trend, Season)

The inputs for the metric expression are included in parentheses and separated by
commas at the end of the metric expression: (Target, Trend, Season).

The following steps provide a brief overview of how to use the metric expression to
deploy the example analytic to MicroStrategy Analytics Enterprise. The metric is placed
in a report for analysis.

To deploy the sample R analytic

1 Copy the metric expression to the clipboard.

2 Open the MicroStrategy Tutorial project in either Developer or Web and run the
report named 2 -- Monthly Revenue Forecast located by default at
Tutorial\Public Objects\Reports\MicroStrategy Platform Capabi
lities\MicroStrategy Data Mining Services\Linear Regression\M
onthly.

3 When the report finishes executing, insert a new metric and give it a name such as
Forecast from R.

4 Paste the metric expression from the clipboard into the Definition field of the new
metric.

5 The inputs are listed at the end of the metric expression, in parentheses and
separated by commas. Map the three inputs to MicroStrategy metrics using the
following steps:

a Highlight Target in the expression and replace it with Revenue from the
Report Objects.

b Highlight Trend in the expression and replace it withMonth Index from the
Report Objects.

c Highlight Season in the expression and replace it withMonth of Year from
the Report Objects.

6 Click OK to save the new metric and re-execute your report.

The values for your new metric generated by R match those from the Revenue
Predictor (Monthly) metric, because they are both linear regression models trained
with the same data as on this report.

4

DEVELOPING R ANALYTICS
FOR MICROSTRATEGY

To allow users to perform statistical analysis in MicroStrategy using R analytics, the R
analytics must first be implemented and deployed to MicroStrategy, as outlined in the
steps below:

1 Install the MicroStrategyR package, described in Installing the MicroStrategyR
Package for R, page 21.

2 Create the R scripts for your analytics, described in Implementing the analytic in R
for use in MicroStrategy, page 22.

The best practices to make your R script more robust are described in Best practices:
Making the R script robust, page 24.

© 2017, MicroStrategy Inc. 20

R Integration Pack User Guide

21 © 2017, MicroStrategy Inc.

3 Capture an analytic’s signature to the R script using the deployR utility and create a
metric expression, as described in Preparing your analytic for MicroStrategy: the
deployR utility, page 37.

For an example of deploying an R script as an R analytic in MicroStrategy, see R analysis
example, page 19.

Installing the MicroStrategyR Package for R
The MicroStrategyR Package includes the R-based deployR utility, which is an interface
used to prepare your R script for deployment to MicroStrategy.

The deployR utility adds a header comment block that reflects the analytic’s signature to
the R script. This information is used by MicroStrategy to pass data to R, execute the
analytic, and then deploy the results.

You must install the MicroStrategyR Package on systems that are being used to develop
your R analytics. R and any dependencies must be installed on systems that will execute
the R analytics deployed to MicroStrategy. These dependencies include any add-on
packages that are required for a given R analytic. The version requirements for your R
environment are described in Installing R, page 9.

The high-level steps to install the MicroStrategyR package are as follows:

1 The MicroStrategyR Package can be installed using the Comprehensive R Archive
Network (CRAN), available via the http://www.r-project.org home page.
Alternatively, this package can be installed by typing this command into an R
console:

install.packages("MicroStrategyR")

To be available to all users and applications, packages need to be installed into
the default R library. To install the package into the default R library to
provide availability to all users and applications, it is recommended that you
use an account with administrative privileges and permissions to the default R
library to install packages.

2 When the MicroStrategyR library is installed, load the library by typing the following
command in the R Console:

library(MicroStrategyR)

This package depends on other R packages for graphics as well as the GTK+ graphical
environment. The absence of the GTK+ graphical environment is common and can
cause the following error messages:

• Windows environments: Messages are displayed that mention missing DLL files.
Click OK to dismiss any error messages encountered due to these missing
requirements. When prompted, accept the installation of the GTK+ graphical
environment to complete the MicroStrategyR Package installation.

• UNIX/Linux environments: The console displays errors related to other
packages, such as the RGtk2 package. You can download the most recent

http://www.r-project.org/

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 22

version of the GTK+ graphical environment for your operating system at sites
such as http://ftp.acc.umu.se/pub/gnome/binaries. After downloaded, you must
manually install the GTK+ graphical environment.

3 When installed, you can launch the deployR utility by typing the following command
in the R Console:

deployR()

After you have installed the components of the R Integration Pack, you can develop R
analytics, described in Implementing the analytic in R for use in MicroStrategy, page
22.

Implementing the analytic in R for use in
MicroStrategy

The R Integration Pack requires a general understanding of the MicroStrategy Business
Intelligence environment, such as creating metrics and using them on reports.

To develop your R analytics, ensure that you or your organization’s system administrator
has installed the MicroStrategyR package on your development machine.

When implementing an analytic in R to use in MicroStrategy, review the following
considerations:

• The inputs and outputs of the R analytic correspond to MicroStrategy metrics.
MicroStrategy metrics represent values in a cell or column of data in a report, grid,
dataset, and so on.

• The input and output variables can be either scalars (a single value) or vectors (one or
more values). It is not possible to automatically pass tables, matrices, or data frames
between MicroStrategy and R when using this approach. To mimic passing table-like
structures between MicroStrategy and R, you can use the Repeated Parameter option
for R analytics, which allows a varying number of inputs.

• In addition to passing values as metric arguments, a set of Boolean, numeric, and
string parameters is available to pass into R scalar values that do not change from
execution to execution. The script’s working directory is also a special function
parameter (see Defining an R script’s file location and working directory, page 22).

• Graphs and plots can be saved to the file system to be included in MicroStrategy
documents and dashboards, as described in Creating images in R to add to
MicroStrategy documents, page 23.

• The R workspace can also be saved to the file system.

Defining an R script’s file location and working
directory
The R scripts for your R analytics store the R script file, error log, and other supporting
files in the directories described below.

http://ftp.acc.umu.se/pub/gnome/binaries

R Integration Pack User Guide

23 © 2017, MicroStrategy Inc.

Location of the R script file

The R script file is located in the R script’s directory, as specified in the _RScriptFile
parameter for the R analytic’s metric in MicroStrategy.

If the path or R script file name listed in the _RScriptFile parameter for R
does not exist or is defined with a URL, the execution of the R script will fail. An R
script failure can cause different error results in MicroStrategy, depending on
whether the R script is used by a stand-alone metric or a derived metric, as
described in Implementing error handling, page 25.

• If the _RScriptFile parameter does not contain a path, the directory defined in
the _WorkingDir parameter for R is used.

• If the _RScriptFile parameter does not contain a path and an existing directory
is not defined in the _WorkingDir parameter for R, the directory defined in the
registry key RScriptsFolder is used.

• If the directory could not be identified using the locations listed above, the default
RScripts folder defined during the R Integration Pack installation is used. This is
typically InstallPath\RScripts.

Location of the R script working directory

The working directory stores an error log and supporting files in the following location:

• If a working directory is specified for R, the directory defined in the _WorkingDir
parameter for R is used.

• If a working directory is not specified for R or the specified directory does not exist,
the location of the R script file, as determined in Location of the R script file, page
23 above, is used.

• If the directory could not be identified using the locations listed above, then the R
Integration Pack installation folder is used.

Creating images in R to add to MicroStrategy
documents
You can create images using R scripts, which can be included in MicroStrategy
documents to display the result of an analysis, illustrate a trend, and so on. The image in
the document is updated whenever the R script used to create the image is run again.

You can also create dynamic images, which allow different images to be displayed, based
on an attribute or metric. For example, a document is paged by Region. You can display a
graph made in R for that particular region in the document.

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 24

To create images in R to use in MicroStrategy

1 Define the R script’s working directory to the location where images for
MicroStrategy are stored. All images must be saved in a location accessible by the
MicroStrategy platform, which can be defined by your system administrator. For
guidelines on where to save images, see Creating a repository for R images, page 8.

2 Within the R script, include code to create an image in R and save the image in the
working directory. For example, the plot command can be used to create images of
statistical graphs. Refer to your third-party R documentation for information on how
to create an R image.

If you are creating dynamic images, save all of the images in the same directory. Give
each image the name of its corresponding attribute element or metric value. For
example, if you created an image you want to display when the value of the Region
attribute is Northeast, you would name the image Northeast. If you have multiple
dynamic images you want to display for an attribute element or metric value, ensure
that the correct image is used by giving each dynamic image a different name that
contains the attribute element or metric value. For information on how to name
dynamic images, see the Document Creation Guide.

Best practices: Making the R script robust
The R Integration Pack automates the execution of an R script and the delivery of its
results to MicroStrategy users. Ideally, if an R script works as expected when executed in
the R console, the script should work properly when deployed to MicroStrategy. To avoid
potential errors, you can make preparations to handle situations that can arise from
differences in how data is supplied, how exceptions are handled, and even differences in
the operating environment. For example, the deployed system can be different from the
R script developer’s system.

This section provides guidance to help make the R script robust enough to handle real
world circumstances that can arise and to make troubleshooting as easy as possible. The
following best practices should be applied to the R script before deploying it to
MicroStrategy:

The following best practices are provided to help utilize R scripts with the
MicroStrategy R Integration Pack. For general R coding principles and examples,
refer to your third-party R documentation.

• Implementing error handling, page 25

• Saving the R workspace , page 27

• Configuring dual execution modes, page 28

• Creating a data frame, page 29

• Using MicroStrategy names for R variables, page 30

• Installing required packages, page 30

https://www2.microstrategy.com/producthelp/10.8/DocCreationGuide/WebHelp/Lang_1033/index.htm

R Integration Pack User Guide

25 © 2017, MicroStrategy Inc.

• Upgrading R, page 33

• R environment with the R Integration Pack, page 33

• Combining all techniques for a robust script, page 34

The simple R script for forecasting seasonal data, shown below, will be used to provide
examples of how to implement these best practices to make your R scripts robust.

Simple R script

#Create a data frame from the input variables

df <- data.frame(cbind(Target, Trend, Season))

#Train model on all records with Target values

model <- lm(Target ~ Trend + factor(Season),data=df[!is.na(Target),])

#Return predictions from the model

Forecast <- predict(model, newdata = df[, -1])

Implementing error handling
Errors or exceptions encountered while executing code enclosed within a tryCatch
function are caught and returned to MicroStrategy in the R variable called
mstr.ErrMsg. (This variable is a reserved name for this purpose).

If an error is returned, MicroStrategy creates an error log file with the message. If your
script generates any output files, this error log file should appear in the same location. It
is good practice to use a working directory specific to your script to keep its error log files
separate from those from other scripts.

The error log file is called RScriptErrors.log and users can find it in the supporting
directory for the R script (see Defining an R script’s file location and working directory,
page 22).

• If the R analytic is deployed as a stand-alone metric, the error causes the report or
document execution to fail, resulting in the error message being displayed to the
user.

• Errors in R analytics deployed as derived metrics or stand-alone metrics that are
configured as smart metrics typically do not cause report or document execution to
fail. (A smart metric calculates subtotals on the individual elements of a metric.)
Instead, null results are displayed as if empty values were returned by the R analytic.
Empty results can indicate that there was a problem executing the R analytic and
that you should check the log file for more details.

For steps to define stand-alone metrics as smart metrics, also referred to as
smart totals, as well as background information on smart metrics, refer to the
Advanced Reporting Guide.

In both cases described above, a message is logged in the DSSErrors.log file, unless
logging is disabled using the MicroStrategy Diagnostics Utility.

https://www2.microstrategy.com/producthelp/10.8/AdvancedReportingGuide/WebHelp/Lang_1033/index.htm

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 26

The DSSErrors.log is typically found at X:\Program Files
(x86)\Common Files\MicroStrategy\Log, where X: is the drive where
MicroStrategy is installed.

In addition to errors caught by the tryCatch function, other conditions can result in
error logging, including:

• Errors during the processing of registry entries, for example, problems with the keys
associated with the InstallPath and RScriptsFolder. These errors do not
cause a report to fail.

• Errors loading the R library or initializing the R environment.

• Errors parsing the R script header block.

• Data type mismatches.

• Failure locating the R script specified by the _RScriptFile parameter for the R
analytic’s metric in MicroStrategy (see Location of the R script file, page 23). This
error can occur if a bad path or file name is specified, or if the script is not found at
the location specified by the RScriptsFolder registry key.

The example R script described in R analysis example, page 19 includes a
command to set the working directory. It is recommended that this line of code is
moved to the body of the script, within a tryCatch function wrapper. This
ensures that any potential failure of the setwd() command is caught.

The following example shows how to wrap the R Integration Pack forecasting example
code in a tryCatch function to catch errors:

R script with tryCatch

#tryCatch for Exception Handling

mstr.ErrMsg <- tryCatch({

#Create a data frame from the input variables

df <- data.frame(cbind(Target, Trend, Season))

#Train model on all records with Target values

model <- lm(Target ~ Trend + factor(Season),data=df[!is.na(Target),
])

#Return predictions from the model

Forecast <- predict(model, newdata = df[, -1])

#Print success message when run from the console

try(print("Success!"))

#If we made it here, no errors were caught

mstr.ErrMsg <- ""

R Integration Pack User Guide

27 © 2017, MicroStrategy Inc.

R script with tryCatch

#Catch block to report an error

}, error = function(err) {

 #Print error message if run from console

 try(print(err))

 #Return error message

 return(err$message)

})

Logging warning messages and errors from R

Warning messages related to R code inform users of potential issues that may be
important, but are not severe enough to halt execution of the statistical analysis.

You can define your R scripts that are executed by MicroStrategy to log all warning
messages to a log file. This provides a way to review warning messages from R that
occurred when the R script was executed by MicroStrategy.

The following code can be added to the beginning of the try block of your R script to
include both warning and error messages from R to the RscriptErrors.log file:

warning_file = file("RScriptErrors.log", open = "wt")
sink(warning_file, type = "message")

At the end of the try block of your R script, and before the line mstr.ErrMsg <- "",
add the following line of code:

sink(type = "message")

At the beginning of the error block, add the following line of code:

sink(type = "message")

When the R script is executed by MicroStrategy, warning messages and errors from R are
logged to RScripErrors.log for review. For the cause and resolution to potential
errors, see Chapter 5, Troubleshooting.

Saving the R workspace
R can save its workspace to the file system. This is helpful when you need to review the
results of an analysis. When you execute a script from the R console, you can easily
inspect the state of the workspace and its objects. It is helpful to capture the R
workspace when MicroStrategy executes the script. The workspace is a valuable tool for
the R developer to use when troubleshooting problems or verifying results.

An example of code inserted to save a workspace is shown below. The addition
(highlighted with bold) to the R script shown below saves objects from the R workspace.

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 28

R script that includes saving the R work space

#Create a data frame from the input variables

df <- data.frame(cbind(Target, Trend, Season))

#Train model on all records with Target values

model <- lm(Target ~ Trend + factor(Season),data=df[!is.na(Target),
])

#Return predictions from the model

Forecast <- predict(model, newdata = df[, -1])

#Persist objects to file

save(list=c("df", "model", "Forecast"), file=paste(FileName,
".Rdata", sep = ""))

Configuring dual execution modes
When developing a new analytic in R, a common practice is to use an iterative process to
ensure that the analytic works as expected. That process usually involves the R script
taking inputs that are either created by the script or read from a data source, such as a
file or a database. The results of the script are usually returned to the R console. But
when the script is deployed to MicroStrategy, MicroStrategy provides the inputs to the R
script and uses the R script outputs.

While it is possible to have the same analytic implemented in two different scripts, one
for running from the console and one for execution by MicroStrategy, this approach
requires maintaining two scripts. In this scenario, it can be difficult to keep the scripts
synchronized as changes occur.

MicroStrategy provides the execution flag mstr.ExFlag, which exists only when
MicroStrategy executes the R script. This means that you can use the existence of the flag
to determine if MicroStrategy executed the R script. You can develop your script to use
this flag and react to whether the script is run from the R console or executed by
MicroStrategy.

The example shown below includes code inserted to adapt the R Integration Pack
forecasting script example to generate its own data when it is not executed by
MicroStrategy. The addition is highlighted with bold.

Code to configure dual execution modes

#Get data

#If this is executed by MicroStrategy

if(exists("mstr.ExFlag")) {

 #Create a data frame from the input variables

 df <- data.frame(cbind(Target, Trend, Season))

R Integration Pack User Guide

29 © 2017, MicroStrategy Inc.

Code to configure dual execution modes

 #If InputNames is non-empty

 if(length(mstr.InputNames) > 0) {

 #Name these variables

 colnames(df) <- mstr.InputNames

 }

#If this is NOT via a MicroStrategy Report Execution

} else {

 #Set random number seed for consistency

 set.seed(42)

 #Set Trend variable for 48 months

 Trend <- seq(1:48)

 #Set Season variable for 4 years of 12 months

 Season <- rep(seq(1:12),4)

 #Set 3 years of linear but noisy values for the Target

 Target <- (seq(1:36)*(0.8+(0.4*runif(36,0,1))))

 #Add the forecast horizon

 Target <- append(Target, c(rep(NA, 12)))

 #Create a data frame from the input variables

 df <- data.frame(cbind(Target, Trend, Season))

 #Set the name for saving output

 FileName <- "SeasonalForecasting_console"

}

#Modeling

#Train model on all records with Target values

model <- lm(Target ~ Trend + factor(Season),data=df[!is.na(Target),
])

#Return predictions from the model

Forecast <- predict(model, newdata = df[, -1])

Creating a data frame
Since most analytics operate on a table of data, known as a data frame in R, it is often
helpful to combine input variables in a data frame. In the seasonal forecast data example,
the three input variables (target, trend, and season) are combined into a data frame.
Since both execution flows use the same data frame object, you can compare the data

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 30

used when MicroStrategy executes the script with the data used when the R console
executes the script. While there are reasons to avoid using a data frame in either flow,
such as if the data frame causes undesired side effects like performance problems, having
the data in the same object for both flows allows for easier comparison.

Using MicroStrategy names for R variables
The R Integration Pack passes data from MicroStrategy into R for execution by mapping
MicroStrategy metrics to R variables. For the R environment to be able to use the
MicroStrategy metric names in objects and graphics that R generates, the names
associated with the inputs from MicroStrategy need to be passed to R.

The names of the metrics in MicroStrategy may not always match the names of
the variables in R. For R analytics, R variables typically have generic names, as is
the case with the R script example used in this section: Target, Trend, and Season.
To forecast monthly revenue, the corresponding MicroStrategy metrics could be
Revenue, Month Index, and Month of Year.

To provide this support, each R script function has an _InputNames function
parameter to allow you to pass MicroStrategy names to R. When you create a metric to
display the results of your R analytic in the MicroStrategy Metric Editor, you can define
the _InputNames function. You can use the metric expression generated for your R
analytic (see Preparing your analytic for MicroStrategy: the deployR utility, page 37) to
retrieve the inputs for your R script. The inputs are located at the end of the metric
expression between the final parentheses “(...)”. You can then replace each input name
with the associated MicroStrategy metric that provides its data, and copy the inputs to
the _InputNames function parameter.

For this example, the metric expression would be "RScript(Revenue, [Month
Index], [Month of Year])". Copy the metric names (between the parentheses)
and paste them into the _InputNames function parameter to define the R analytic’s
metric parameter as Revenue, [Month Index], [Month of Year]. An example
using MicroStrategy Developer’s Metric Editor is shown below:

Installing required packages
R scripts commonly have dependencies on R packages, which are modules that provide
additional functionality beyond the out-of-the-box features included with the standard R
installation. R packages are installed from CRAN mirror repository sites. The machine
executing the script must have access to the Internet to download any missing packages.

R Integration Pack User Guide

31 © 2017, MicroStrategy Inc.

If an R 3.x installation is not available from http://CRAN.R-project.org for your
version of Linux, third-party tools such as the Yellowdog Updated, Modified (Yum)
and Extra Packages for Enterprise Linux (EPEL) can be used to install and update
your R installation. Refer to your third-party R documentation available at
http://www.r-project.org/ for information on installing and updating R using
these tools.

A default CRAN mirror repository site can be established by modifying the following
code, by replacing CRANMirrorURL with the desired CRAN mirror URL in the
RProfile file located in the /library/base/R directory of the R installation:

options(repos= c(CRAN="CRANMirrorURL"))

For example, you can establish http://cran.rstudio.com as the default CRAN
mirror repository as shown below:

options(repos= c(CRAN="http://cran.rstudio.com"))

Packages can also be installed manually using the R console, as shown below:

install.packages("RPackage")

Packages need to be installed into the default R library to be available to all users
and applications. Administrative privileges are typically required to install into the
default R library. Therefore, to install a package into the default R library to
provide availability to all users and applications, it is recommended to use an
account with administrative privileges and permissions to the default R library to
install packages.

When you install packages manually, the R console will prompt you to identify a CRAN
mirror repository to use. To avoid this prompt, specify a CRAN mirror repository as part
of the manual installation from the R console, as shown below:

install.packages("RPackage",
repos="http://cran.rstudio.com")

The sample R script below avoids any required user intervention to install R packages by
automatically checking for and installing R packages if necessary. This approach assumes
that the machine executing the script has access to the Internet to download any missing
packages. For environments that do not have access to the Internet, other workflows
need to be used to add any required R packages to the environment.

Installing R packages can require administrative access to folders. The sample R
script below includes error handling if the user employing the R script does not
have the administrative access required to complete the package installation. In
these cases, the sample R script below installs the package in a personal folder for
the user that he has access to, or a new folder is created. This error handling for
installing packages should be included in R scripts used in MicroStrategy to ensure
that users without administrative access can employ the R scripts.

http://cran.r-project.org/
http://www.r-project.org/

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 32

R script that checks for and installs missing packages

#Check to see if package(s) are installed, install if not and then
load

#pkgs is a vector of strings with length >= 1

CheckInstallPackages <- function(pkgs){

#For each pkg in pkgs (attempt to load each package one at a time):

 x <- lapply(pkgs, function(pkg){

 #Load the package if available,

 if(!do.call("require", list(pkg))) {

 #Silently attempt to install into the default library

 try(install.packages(pkg,
lib=.Library,repos="http://cran.rstudio.com"))

#Now attempt to load the package, catch error if it wasn't
installed

 tryCatch(do.call("library", list(pkg)),

 #Catch if we're unable to install into the default library

 error = function(err) {

 #If non-interactive, install into this user's personal library

 if(!interactive()) {

 #Get the path to this user's personal library

 personalLibPath <- Sys.getenv("R_LIBS_USER")

 #If the personal library is not in the list of libraries

 if(is.na(match(personalLibPath, .libPaths()))) {

 #Then create the personal library

 dir.create(personalLibPath, recursive = TRUE)

 #And add the personal library to the list of libraries

 .libPaths(personalLibPath)

 }

 #Attempt to install the package into the personal library

 #If this fails, raise the error back to the report

 install.packages(pkg,
lib=personalLibPath, repos="http://cran.rstudio.com")

 #Finally, attempt to load the package

 do.call("library", list(pkg))

 }})}})

R Integration Pack User Guide

33 © 2017, MicroStrategy Inc.

R script that checks for and installs missing packages

}

#Load the PMML package

CheckInstallPackages(c("pmml"))

#Save the model as PMML

saveXML(pmml(model), paste(FileName,".xml", sep=""))

Upgrading R
Several times a year, new releases of R become available from http://CRAN.R-
project.org. The following steps are recommended to minimize the possibility of
problems when upgrading to a new R release to use with the R Integration Pack.

If an R 3.x installation is not available from http://CRAN.R-project.org for your
version of Linux, third-party tools such as the Yellowdog Updated, Modified (Yum)
and Extra Packages for Enterprise Linux (EPEL) can be used to install and update
your R installation. Refer to your third-party R documentation available at
http://www.r-project.org/ for information on installing and updating R using
these tools.

To upgrade your R environment

1 Uninstall the old version of R. Uninstalling R removes files from the initial
installation, but not packages that have been installed or updated.

See the third-party R documentation for steps to uninstall R for your machine
configuration.

2 Install the new version of R from http://CRAN.R-project.org.

3 Copy any installed packages from the old installation library folder to the new
installation library folder.

4 In the new R console, run the following command:

update.packages(checkBuilt=TRUE, ask=FALSE)

5 Delete any files left from the old installation.

R environment with the R Integration Pack
The R Integration Pack uses local environments for each execution. However, when
developing R scripts to be executed in the R Integration Pack environment, use the
following rules to ensure proper and expected behavior:

• Always initialize R variables before use.

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://www.r-project.org/
http://cran.r-project.org/

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 34

• Do not rely on a test of an R variable’s existence to indicate the state of the script,
since the variable could have been created by an entirely different script.

Combining all techniques for a robust script
The simple R script example, unmodified, is shown again below:

Simple R script

#Create a data frame from the input variables

df <- data.frame(cbind(Target, Trend, Season))

#Train model on all records with Target values

model <- lm(Target ~ Trend + factor(Season),data=df[!is.na(Target),
])

#Return predictions from the model

Forecast <- predict(model, newdata = df[, -1])

By using all of the recommendations above, the script shown below is more robust to
handle errors, generates PMML, saves important objects from the R environment for
future analysis, and can be executed using the R console or MicroStrategy:

Robust R script

#tryCatch for Exception Handling

mstr.ErrMsg <- tryCatch({

#Working Directory if executed by MicroStrategy

if(exists("mstr.WorkingDir")) setwd(mstr.WorkingDir)

#Check to see if package(s) are installed, install if not and then
load

#pkgs is a vector of strings with length >=1

CheckInstallPackages <- function(pkgs){

#For each pkg in pkgs (attempt to load each package one at a time):

 x <- lapply(pkgs, function(pkg){

 #Load the package if available,

 if(!do.call("require", list(pkg))) {

 #Silently attempt to install into the default library

 try(install.packages(pkg,
lib=.Library,repos="http://cran.rstudio.com"))

 #Now attempt to load the package, catch error if it wasn't
installed

R Integration Pack User Guide

35 © 2017, MicroStrategy Inc.

Robust R script

 tryCatch(do.call("library", list(pkg)),

 #Catch if we're unable to install into the default library

 error = function(err) {

 #If non-interactive, install into this user's personal library

 if(!interactive()) {

 #Get the path to this user's personal library

 personalLibPath <- Sys.getenv("R_LIBS_USER")

 #If the personal library is not in the list of libraries

 if(is.na(match(personalLibPath, .libPaths()))) {

 #Then create the personal library

 dir.create(personalLibPath, recursive = TRUE)

 #And add the personal library to the list of libraries

 .libPaths(personalLibPath)

 }

 #Attempt to install the package into the personal library

 #If this fails, raise the error back to the report

 install.packages(pkg,
lib=personalLibPath, repos="http://cran.rstudio.com")

 #Finally, attempt to load the package

 do.call("library", list(pkg))

 }})}})

}

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 36

Robust R script

#Get data

#If this is executed by MicroStrategy

if(exists("mstr.ExFlag")) {

 #Create a data frame from the input variables

 df <- data.frame(cbind(Target, Trend, Season))

 #If InputNames is non-empty

 if(length(mstr.InputNames) > 0) {

 #Name these variables

 colnames(df) <- mstr.InputNames

 }

#If this is NOT via a MicroStrategy Report Execution

} else {

 #Set random number seed for consistency

 set.seed(42)

 #Set Trend variable for 48 months

 Trend <- seq(1:48)

 #Set Season variable for 4 years of 12 months

 Season <- rep(seq(1:12),4)

 #Set 3 years of linear but noisy values for the Target

 Target <- (seq(1:36)*(0.8+(0.4*runif(36,0,1))))

 #Add the forecast horizon

 Target <- append(Target, c(rep(NA, 12)))

 #Create a data frame from the input variables

 df <- data.frame(cbind(Target, Trend, Season))

 #Set the name for saving output

 FileName <- "SeasonalForecasting_console"

}

#Modeling

#Train model on all records with Target values

model <- lm(Target ~ Trend + factor(Season),data=df[!is.na(Target),
])

#Return predictions from the model

R Integration Pack User Guide

37 © 2017, MicroStrategy Inc.

Robust R script

Forecast <- predict(model, newdata = df[, -1])

#If FileName is not an empty string

if(nchar(FileName)>0) {

 #Persist objects to file

 save(list=c("df", "model", "Forecast"), file=paste(FileName,
".Rdata", sep = ""))

 #Load the PMML package

 CheckInstallPackages(c("pmml"))

 #Save the model as PMML

 saveXML(pmml(model), paste(FileName,".xml", sep=""))

}

#Print completion message when run from the console

try(print("Success!"))

#If we made it here, no errors were caught

mstr.ErrMsg <- ""

#Catch block to report an error

}, error = function(err) {

 #Print error message if run from console

 try(print(err))

 #Return error message

 return(err$message)

})

Preparing your analytic for MicroStrategy: the
deployR utility

After implementing an R analytic in an R script that is ready to be deployed to
MicroStrategy, you must define how MicroStrategy interacts with the analytic by
capturing the analytic’s signature. The analytic’s signature is a description of the number
and nature of the inputs and outputs to the R script, along with any other information
needed for MicroStrategy to execute the script properly.

The deployR utility is an R-based utility that analyzes an R script, captures its signature,
and creates the metric expressions that execute the function within MicroStrategy. The
following image shows the deployR utility.

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 38

The standard workflow for using the deployR utility to capture the signature of your R
analytic and deploy it to MicroStrategy follows.

To prepare R scripts using the deployR utility

1 From an R console, open the deployR utility using the following commands:

library(MicroStrategyR)
deployR()

The deployR utility opens.

2 Click the Open button at the upper left to open your R script.

After you open your R script, the deployR utility parses the script to identify all
potential variables.

• If this script contains the MicroStrategy header block at the top, then the header
information is used to configure the utility. Any unidentified variables are
displayed in the Unused Variables column.

• If the script does not contain a MicroStrategy header block, the deployR utility
attempts to determine whether a variable is an input or an output, based on the
first occurrence of that variable in the script. If the variable’s first occurrence
assigns it a value, it is considered an output; otherwise, it is designated as an
input.

• For new variables, the default Data Type is Numeric and the default Parameter
Type is Vector.

3 Determine the path that is used for the R script using one of the following methods:

R Integration Pack User Guide

39 © 2017, MicroStrategy Inc.

• To include the selected R script’s file name and path in the metric expression,
clear the Use R Script Folder check box. When executed, the R script file
name and path you specify will be used. If the R script is not found, execution
will fail and an error will be logged, if possible.

If you clear this check box, the same folder path must exist or be accessible on
the machines where this R script is provided to support execution in
MicroStrategy. For more information, see Creating a centralized repository for
R script files , page 8.

• To include only the file name of the R script in the metric expression, select the
Use R Script Folder check box. When executed, the R Script Folder is
searched for the specified script. If the R script is not found, execution will fail
and an error will be logged, if possible. The default location for the R Script
Folder is RIntegrationPackInstallFolder\RScripts. This location is
controlled by the HKLM\SOFTWARE\\MicroStrategy\R Integration
Pack\RScriptsFolder registry key.

4 Modify the definition of each variable as required to match the function’s logic.

a Drag and drop variables to place them in the appropriate columns:

▫ Unused Variables: Variables that appear in the R script but are not
passed between MicroStrategy and R as either inputs, outputs, or
parameters. The order of unused variables does not affect the R script
execution.

▫ Input: Data that is imported into R from MicroStrategy. The order of
inputs, from top to bottom, determines the order of arguments passed in
from MicroStrategy, from left to right.

▫ Parameter: Data that is passed as one of the various function parameters
available for passing scalar values from MicroStrategy to R. These function
parameters include Boolean parameters, numbers, and strings. Parameters
are typically used for values that are changed infrequently or values that are
not determined from other metrics.

Use the Parameter drop-down list to specify which parameter to use. Each
parameter can only be used for one variable. The order of parameters does
not affect the R script execution.

▫ Output: Data that is returned from R to MicroStrategy. If there is more
than one output, the first output is considered the default output. The order
of any additional outputs does not affect the signature.

b Each variable must be configured appropriately, as described below:

a Set Data Type to one of the following options:

— Numeric: Indicates variables that contain numbers.

— String: Indicates variables that contain text.

— Default: Indicates that the data type defined by MicroStrategy should
be used. This setting can be used for inputs only. It is useful for scripts

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 40

that use categorical variables, such as Month. This type of categorical
variable can be strings (such as Jan, Feb, Mar, and so on) or numbers.

b Set Parameter Type to one of the following options:

— Vector: Indicates a variable that contains one or more values.

— Scalar: Indicates a variable that contains only one value.

5 If one or more of the input variables form a repeated argument, define a value for
Repeat Count.

This option identifies an input that can vary in quantity; such variables are known as
repeated arguments because they represent a varying number of variables. The
Repeat Count value specifies how many of the input variables can be repeated,
counting backwards from the last variable. These variables always occur at the end of
the list of arguments. These variables appear in the Inputs column with an asterisk
(*). Examples include:

• A predictive analytical function supports one target variable Y (the dependent
variable) and an indeterminate number of explanatory variables X (independent
variables). Establish this configuration by defining Y as the first variable, defining
X as the second variable, and defining a Repeat Count value of 1. The deployR
utility recognizes that Y is the first argument passed into the function, followed
by one or more X variables.

• A predictive analytical function supports one target variable Y (the dependent
variable) and an indeterminate number of explanatory, independent variable
pairs, X1 and X2. X1 is a numeric identifier for an item and X2 is its text
description. By defining Y as the first input, X1 as the second, X2 as the third,
and a Repeat Count value of 2, the deployR utility recognizes that Y is the first
argument and there can be one or more pairs of X1 and X2 variables passed into
the R script.

While defining a Repeat Count allows for additional metrics to be included as inputs
passed back to R, the number of inputs provided in the metric expression generated
by deployR is not affected by the value specified for Repeat Count. Additional metrics
can be included in the metric expression when Including the R script in a metric,
page 17.

6 You can define the metric that utilizes the R script using theMetric Specification
section, which contains the following options:

• Nulls Allowed: Controls whether records containing null values are to be
passed in as inputs to your analytic:

▫ By default this option is selected and null values are included in the analysis.

▫ If this option is cleared, all records containing null values are eliminated
from the analysis.

• Check Input Count: Controls whether MicroStrategy ensures that the number
of inputs to the metric matches exactly with the number of inputs specified in
the function’s signature:

R Integration Pack User Guide

41 © 2017, MicroStrategy Inc.

▫ By default, the option is selected. If it is selected and the number of inputs is
different, a warning message is returned when using the R script in
MicroStrategy.

▫ If the option is cleared and the number of inputs is different, the script
execution will attempt to proceed.

• Enable Sort By: Controls the sorting of records before the data is passed to R:

▫ By default, the option is selected. If this option is selected, the first input
must be a vector, since the default behavior sorts records in ascending order
by the first input. To specify a particular sorting criterion, you can type the
sort by value in the field below the check box.

▫ If this option is cleared, the order of records passed into R is determined by
MicroStrategy automatically.

• Specify Working Directory: Allows you to specify a working directory for
your R scripts used in MicroStrategy, without affecting your R configuration:

▫ By default, this option is cleared and the path provided for each R script is
used.

▫ To specify a working directory for MicroStrategy to search for R scripts,
select the check box and specify a working directory in the field below the
check box. MicroStrategy does not alter R’s working directory, which is
otherwise determined by R.

• Output Variable: Allows the user to control which variable is returned to
MicroStrategy. The first output of an R script is selected by default. This output
variable is not included in the metric expression.

7 To review the changes before saving, click Preview.

8 After you have configured the variables and specified the metric options, you can
save the analytic’s signature to the R script by clicking Save.

9 After saving the signature to your R script, the deployR utility provides the metric
expression for your analytic. The Metric Expression pane at the bottom right of the
dialog box shows the metric expression that defines how MicroStrategy interacts
with your function. To complete the creation of a metric for your R analytic and test
your R analytic:

a Click Copy to Clipboard, and then paste this metric expression into any
MicroStrategy metric editor, including the metric editors available for
MicroStrategy Developer, MicroStrategy Web, MicroStrategy Desktop, and
MicroStrategy Visual Insight.

b Map each of the inputs of the expression, which are included between
parentheses, to MicroStrategy metrics that provide the data for statistical
analysis. An example of this modification is provided in R analysis example,
page 19.

c If any errors are encountered when executing reports, documents, or dashboards
that include the metric, refer to Chapter 5, Troubleshooting for potential error
messages and their resolutions.

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 42

Modifying the R analytic deployment example
Below is the R script for the forecasting analytic described in Combining all techniques
for a robust script, page 34. It is also available as part of the installation package in the
default RScripts folder as a file called SeasonalForecasting.R.

The header block for this R script is as follows:

#MICROSTRATEGY_BEGIN
#
#RVAR target -input -numeric -vector
#RVAR trend -input -numeric -vector
#RVAR Season -input -vector
#
#RVAR FileName -parameter StringParam9
#
#RVAR Forecast -output -numeric -vector
#Metric Expression:
RScript<_RScriptFile="SeasonalForecasting.R",
_InputNames="Target, Trend, Season", StringParam9="">
(Target, Trend, Season)
#
#MICROSTRATEGY_END

This header includes the following features:

• Lines that begin with # are comments, and are ignored by R.

• MicroStrategy processes the contents between the #MICROSTRATEGY_BEGIN and
#MICROSTRATEGY_END lines to understand the analytic’s signature. You should not
edit this block manually because doing so can cause errors.

• If you modify the R script or want to change anything else, open the R script using
the deployR utility. The deployR utility automatically restores everything in the
header, as well as looks for any new variables in the script. You can then use the
deployR utility to make adjustments. Saving any changes replaces the existing header
block with an updated one, and provides the updated metric expression as well.

The metric expression, highlighted with bold text above, is included in this header block
and is ready to copy and paste into a metric definition. For steps to deploy this script
with the MicroStrategy Tutorial project available with MicroStrategy Analytics
Enterprise, see R analysis example, page 19.

5

TROUBLESHOOTING
The MicroStrategy R Integration Pack returns error and warning messages to help
troubleshoot potential issues.

You can search for error messages within this guide, to find a potential cause and
resolution to a problem. Be aware that error messages can contain names of variables,
data types, file names, and other options that are specific to your environment. If you
cannot find the error message by searching for the entire error message, try searching
for one or several words in the error message.

• Locating error messages, page 43: Information on how to locate and review any
error messages that are returned when using the R Integration Pack.

• Troubleshooting your installation, page 44: Troubleshooting steps for error
messages that are potentially caused by problems with the installation or setup of the
R Integration Pack or other supporting files or systems.

• Troubleshooting the development of R scripts, page 45: Troubleshooting steps for
error messages that are potentially caused when you create your R script or process it
with the deployR utility.

• Troubleshooting R integration in MicroStrategy, page 49: Troubleshooting steps for
error messages that are potentially caused when R statistical analysis is performed in
MicroStrategy by creating a metric that includes statistical analysis from an R script.

Locating error messages
When the R Integration Pack returns error messages, they are logged to files listed
below:

• The DSSErrors.log file for your MicroStrategy installation. Contact your
MicroStrategy administrator for information on where this log is stored and what
information is included.

• The RScriptErrors.log file for your R Integration Pack installation. The
developer of the R script determines where this log is stored and what information is
included, as described in Implementing error handling, page 25.

© 2017, MicroStrategy Inc. 43

R Integration Pack User Guide

44 © 2017, MicroStrategy Inc.

Error messages can also be displayed as a replacement to the numeric results of a metric
displayed in a report, document, or dashboard that uses an R script to integrate R
statistical analysis into MicroStrategy.

If a metric displays empty results, this can indicate that an error was encountered.
The error can be retrieved from the error logs listed above.

Troubleshooting your installation
The following table lists error messages that are potentially caused by problems with the
installation or set up of the R Integration Pack or other supporting files or systems (see
Chapter 2, Installing and Configuring the R Integration Pack). An administrator who
installs and configures the R Integration Pack can review the resolutions listed below to
troubleshoot any problems.

Error message Cause Resolution

RIntegrationPack required.

This error message is displayed
as the results of a metric in
MicroStrategy.

The R Script functions of the R
Integration Pack have not
been installed on the
computer.

Install the R Script functions on the
computer, as described in
Installing the RScript functions,
page 10.

Load of R.DLL failed (error
code=n).

The R libraries or dependent
libraries are not available or
accessible on the Windows
environment.

Ensure that you have installed R to
meet the requirements of the R
Integration Pack, as described in
Installing R, page 9.

Load of R library failed. The R libraries or dependent
libraries are not available or
accessible on the UNIX
environment.

Ensure that you have installed R to
meet the requirements of the R
Integration Pack, as described in
Installing R, page 9.

An error message from dlerror
(), such as:

Cannot open libR.so: no such
file or directory

Initialization of R environment
failed.

Your R installation cannot be
initialized.

Ensure that you have installed R to
meet the requirements of the R
Integration Pack, as described in
Installing R, page 9.

A newer version of this
application is already installed
on this computer. If you wish to
install this version, please
uninstall the newer version
first. Click OK to exit the
wizard.

This error message is displayed
when attempting to upgrade
the R Integration Pack.

If you are upgrading an early
version (1.000.002 and
earlier) of the R script
functions, the installation may
fail.

If you encounter this problem
while upgrading, you must first
uninstall the existing version of the
R script functions. Refer to your
third-party Microsoft
documentation for steps to
remove programs from your
system. Once the earlier version of
the R script functions are
removed, you can install the new
version using the steps described
in Installing the RScript functions,
page 10.

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 45

Troubleshooting the development of R scripts
The following table lists error messages that are potentially caused when creating your R
script or processing it with the deployR utility (see Chapter 4, Developing R Analytics for
MicroStrategy). An R developer who creates R Analytics can review the resolutions
listed below to troubleshoot any problems

Error message Cause Resolution

One of the defined RVAR
variable names exceeds the
maximum allowable length
(250).

A variable has a name that
exceeds 250 characters. This
is often caused by making
manual changes to the R
script header block. This can
also be caused by a variable
in your R code that exceeds
250 characters for its name.

Use the deployR utility to update
the names of your variables so that
they meet the 250-character limit.
If the names depend on
information that is part of the R
script code, make modifications to
the R script code to reduce the
length of variable names.

One of the defined RVAR
parameter names exceeds the
maximum allowable length
(250).

A parameter has a name that
exceeds 250 characters. This
is often caused by making
manual changes to the R
script header block. This can
also be caused by a
parameter in your R code
that exceeds 250 characters
for its name.

Use the deployR utility to update
the names of your parameters so
that they meet the 250-character
limit. If the names depend on
information that is part of the R
script code, make modifications to
the R script code to reduce the
length of names.

One of the defined RVAR
options exceeds the
maximum allowable length
(250).

An option has a name that
exceeds 250 characters. This
is often caused by making
manual changes to the R
script header block.

Use the deployR utility to update
the names of your options so that
they meet the 250-character limit.

Missing 'MICROSTRATEGY_
BEGIN' marker.

The header block of the R
script is incorrect. This is
often caused by not using the
deployR utility to process the
R script or by making manual
changes to the R script.

Use the deployR utility to process
your R script. Once the R script has
been updated using deployR, open
the R script to ensure that it
includes MICROSTRATEGY_BEGIN
in the header block.

Missing 'MICROSTRATEGY_
END' marker.

The header block of the R
script is incorrect. This is
often caused by not using the
deployR utility to process the
R script or by making manual
changes to the R script.

Use the deployR utility to process
your R script. Once the R script has
been updated using deployR, open
the R script to ensure that it
includes MICROSTRATEGY_END in
the header block.

The variable name 'Variable' is
defined multiple times.

Where Variable is the name of
the variable.

The header block of the R
script is incorrect. This is
often caused by not using the
deployR utility to process the
R script or by making manual
changes to the R script.

Use the deployR utility to process
your R script, which ensures that
variables are not defined multiple
times.

The name 'Variable' is Your R code uses a reserved Update your R code to ensure that

R Integration Pack User Guide

46 © 2017, MicroStrategy Inc.

Error message Cause Resolution

reserved and cannot be used
as a variable name.

Where Variable is the name of
the variable.

name for a variable. variables do not use reserved
names. Reserved names include:

• if

• else

• repeat

• while

• function

• for

• in

• next

• break

• TRUE

• FALSE

• NULL

• Inf

• NaN

• NA

• NA_integer_

• NA_real_

• NA_complex

• NA_character_and

The variable name 'Variable'
begins with 'mstr.', which is
reserved for internal use only.

Where Variable is the name of
the variable.

Variables beginning with
mstr. are reserved to pass
information between
MicroStrategy and the R
script. This can occur in your
R code or within the R script
header block if manual
changes were made.

Update your R code to ensure that
variables do not use the mstr.
prefix. Use the deployR utility to
process your R script, which
ensures that variables do not use
this reserved prefix.

The variable name 'Variable'
contains an invalid character.

Where Variable is the name of
the variable.

Your R code uses an invalid
character or begins with an
invalid character, or manual
changes were done to the R
script header block.

Update your R code to ensure that
variables do not use invalid
characters. Invalid characters
include:

/;,:|\{}
[]+=-!@#$%^&*()
~?><'`\"

Additionally, you cannot use any of

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 47

Error message Cause Resolution

the following characters as the first
character of a variable name:

_0123456789

Use the deployR utility to process
your R script, which ensures that
variables do not use invalid
characters in their names.

‘-Option’ is an unsupported
parameter data type.

Where Option is the name of
the data type for a variable.

This is often caused by not
using the deployR utility to
process the R script or by
making manual changes to
the R script.

Use the deployR utility to process
your R script.

'Parameter' is not a valid
function parameter name.

Where Parameter is the name
of the parameter.

This is often caused by not
using the deployR utility to
process the R script or by
making manual changes to
the R script.

Use the deployR utility to process
your R script, which ensures that
parameters use names of the
following formats:

• NumericParamN

• StringParamN

• BooleanParamN

Where N is a digit from 1 to 9.

The function parameter name
'Parameter' is defined multiple
times.

Where Parameter is the name
of the parameter.

This is often caused by not
using the deployR utility to
process the R script or by
making manual changes to
the R script.

Use the deployR utility to process
your R script.

Must specify data type (-num
or -str) for all output (-o)
variables.

This is often caused by not
using the deployR utility to
process the R script or by
making manual changes to
the R script.

Use the deployR utility to process
your R script and select an
appropriate data type for each
output variable.

At least one input is required. This is often caused by not
using the deployR utility to
process the R script or by
making manual changes to
the R script.

Use the deployR utility to process
your R script. Your changes cannot
be saved until you define at least
one input.

At least one output is required. This is often caused by not
using the deployR utility to
process the R script or by
making manual changes to
the R script.

Use the deployR utility to process
your R script. Your changes cannot
be saved until you define at least
one output.

R Integration Pack User Guide

48 © 2017, MicroStrategy Inc.

Error message Cause Resolution

Vector output requires at least
one vector input.

All inputs are defined with a
scalar data type, but at least
one of the outputs uses a
vector data type.

Use the deployR utility to process
your R script. Your changes cannot
be saved until at least one vector
input is defined when there are
vector outputs.

All scalar inputs and output.
Must use RScriptSimple
function.

This is often caused by not
using the deployR utility to
process the R script or by
making manual changes to
the R script.

Use the deployR utility to process
your R script. When all inputs and
outputs use the scalar data type,
the RScriptSimple function is
automatically used for the metric
expression.

Vector inputs and output. Must
use RScriptU or Rscript
function.

This is often caused by not
using the deployR utility to
process the R script or by
making manual changes to
the R script.

Use the deployR utility to process
your R script. A valid function is
automatically used for the metric
expression.

Vector inputs and scalar
output. Must use RScriptAggU
or RScriptAgg function.

This is often caused by not
using the deployR utility to
process the R script or by
making manual changes to
the R script.

Use the deployR utility to process
your R script. A valid function is
automatically used for the metric
expression.

RScript and RScriptAgg require
a vector for the first input.

This is often caused by not
using the deployR utility to
process the R script or by
making manual changes to
the R script.

Use the deployR utility to process
your R script. A valid metric
expression is automatically
generated based on your R script.

R script execution error:
RErrorMessage

Where RErrorMessage is the
error message returned from
R.

An error was returned from
the R script code.

Review the error message returned
and review your R code. You can
use the R console provided with
your installation of R to perform
troubleshooting on your R code.

R script execution error with
no error message. Possible
causes: execution error
outside tryCatch() or syntax
error.

The R code includes a syntax
error or an execution error
occurred that was not caught
by tryCatch() error handling.

Review the error message returned
and review your R code. You can
use the R console provided with
your installation of R to perform
troubleshooting on your R code. If
no errors are returned from the R
console, review your R code for
sections that are not included
within a tryCatch().

Actual data type RDataType is
not compatible with the
expected data type DataType
for output 'Output'.

Where:

• RDataType is the data type
retrieved from R.

The data type defined in the
R code and the data type
defined by using deployR are
not compatible.

Determine the correct data type for
the output:

• If the incorrect data type is used
in your R code, update your R
code to use the correct data
type for the output.

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 49

Error message Cause Resolution

• DataType is the data type
defined in the header
block of the R script.

• Output is the name of the
output variable.

• If the incorrect data type is used
in the header block of your R
script, use deployR to select the
correct data type for the output.

Troubleshooting R integration in MicroStrategy
The following table lists error messages that are potentially caused when performing R
statistical analysis in MicroStrategy by creating a metric that includes statistical analysis
from an R script (see Chapter 3, Performing statistical analysis). A MicroStrategy user
who creates metrics, reports, documents, and dashboards that include R statistical
analysis can review the resolutions listed below to troubleshoot any problems

Error message Cause Resolution

Valid script repository must
be specified if using relative
R script filename.

The _RScriptFile
parameter of the metric
expression includes only an R
script name and the R script
repository for the computer
could not be found.

Ensure that the R script is stored in
the R script repository for the
computer.

Missing R script file name. The _RScriptFile
parameter is empty.

Define the _RScriptFile
parameter in the metric expression.
You can retrieve the original metric
expression from the R script, as
described in Retrieving the metric
expression, page 16. If the _
RScriptFile parameter is also
empty in the R script, contact the
developer of the R script to
determine its location.

R script file 'Script' not found.

Where 'Script' is the name of
the R script.

The R script could not be
found in the specified
location.

Ensure that the R script is stored in
the location specified in the _
RScriptFile parameter (see
Making the R script available, page
16).

Error opening R script file
'Script'.

Where 'Script' is the name of
the R script.

The permissions for
accessing the R script
prevent opening the R script.

Ensure that you have the required
permissions to access the folder
where the R script is stored and the
R script itself.

The output Output specified
in the _OutputVar
parameter is not defined.

Where Output is the name of

The _OutputVar
parameter has been
modified when creating a
metric.

Ensure that the _OutputVar
parameter for the metric is defined
with a valid value.

R Integration Pack User Guide

50 © 2017, MicroStrategy Inc.

Error message Cause Resolution

the output variable.

The actual number of inputs
(InputCount) does not equal
to the number of inputs
specified within the R script
(InputRVARCount).

Where:

• InputCount is the number
of inputs used when
executing the R script.

• InputRVARCount is the
number of inputs defined
in the header block of the
R script.

The _CheckInputCount
parameter is defined as True
and the number of metrics
included in the metric
expression is not valid for the
inputs required for the R
script.

Ensure that you have provided
metrics for each input included in
the metric expression. You can
retrieve the original metric
expression from the R script, as
described in Retrieving the metric
expression, page 16. If the correct
number of metrics appears to be
included but you continue to receive
this error, contact the developer of
the R script to determine the
expected number of metrics that
should be included in your metric
expression.

The actual number of inputs
(InputCount) is less than the
number of inputs specified
within the R script
(InputRVARCount).

Where:

• InputCount is the number
of inputs used when
executing the R script.

• InputRVARCount is the
number of inputs defined
in the header block of the
R script.

The _CheckInputCount
parameter is defined as True
and the number of metrics
included in the metric
expression is less than the
inputs required for the R
script.

Ensure that you have provided
metrics for each input included in
the metric expression. You can
retrieve the original metric
expression from the R script, as
described in Retrieving the metric
expression, page 16.

The actual number of inputs
(InputCount) is not consistent
with the number of repeated
inputs specified within the R
script (InputRVARCount).

Where:

• InputCount is the number
of inputs used when
executing the R script.

• InputRVARCount is the
number of inputs defined
in the header block of the
R script.

The _CheckInputCount
parameter is defined as True,
at least one input variable
can accept multiple inputs,
and the number of metrics
included in the metric
expression does not match
with the allowable number of
inputs that can be passed
back to R.

Ensure that you have provided
metrics for each input included in
the metric expression. Inputs for R
can support multiple metrics as their
input. Contact the developer of the R
script to determine the expected
number of metrics that should be
included in your metric expression.

Actual data type DataType
for input variable ‘Input’ is
not supported.

Where:

The data type for the metric
mapped to an input variable
is not compatible with the
input variables data type
defined in R.

Ensure that you have provided the
correct metric for the input variable
specified in the error message and
that the metric’s data type is correct.
If no changes to the metric are

R Integration Pack User Guide

© 2017, MicroStrategy Inc. 51

Error message Cause Resolution

• DataType is the data
type for themetric
mapped to an input
variable.

• Input is the name of the
input variable.

• RDataType is the data
type retrieved from R.

needed, contact the developer of the
R script to determine if the input
variable is using the correct data
type.

Actual data type DataType
for input variable ‘Input’ is
not compatible with the
expected data type
RDataType.

Where:

• DataType is the data
type for themetric
mapped to an input
variable.

• Input is the name of the
input variable.

• RDataType is the data
type retrieved from R.

The data type for the metric
uses a data type that is not
supported for passing
information back to R.

Modify the data type for the metric
that is mapped to the input variable
specified. Supported metric data
types include:

• Short

• Integer

• Float

• Double

• String

• UTF8 string

The input variable ‘Input’
contained nulls which were
skipped due to null-
processing settings. Failing
report to avoid potential
pairing-up problems.

The _NullsAllowed
parameter for the metric is
defined as False, and
multiple metrics were
mapped to input variables
that contained null values.

You can ignore this warning message
and allow null values to be passed
back to R by defining the _
NullsAllowed parameter for the
metric as True.

Invalid _InputNames
value: Nested brackets not
allowed.

Nested brackets (bracket
characters are []) are
included in the _
InputNames parameter
value, which is not a valid
syntax. This can occur if you
updated the metric’s _
InputNames parameter.

A single set of brackets is required if
an input name includes a space or
other special character. Update the
metric expression for a metric to
ensure that all nested brackets are
removed. For example:

• Incorrect syntax: [_
InputNames]="Input1,
[[Input 2]], Input3"

• Correct syntax: [_
InputNames]="Input1,
[Input 2], Input3"

Invalid _InputNames
value: Missing comma
separator before opening
bracket.

A comma is missing between
the input variables included
in the _InputNames
parameter value. This can
occur if you updated the
metric’s _InputNames

Update the metric expression for a
metric to ensure that a single
comma is used to separate each
input variable. For example:

• Incorrect syntax: [_

R Integration Pack User Guide

52 © 2017, MicroStrategy Inc.

Error message Cause Resolution

parameter. InputNames]="Input1
[Input 2], Input3"

• Correct syntax: [_
InputNames]="Input1,
[Input 2], Input3"

Invalid _InputNames
value: Missing opening
bracket.

A closing bracket (]) does
not have a matching opening
bracket ([) within the _
InputNames parameter
value. This can occur if you
updated the metric’s _
InputNames parameter.

Update the metric expression for a
metric to ensure that matching
opening and closing brackets are
included. For example:

• Incorrect syntax: [_
InputNames]="Input1,
Input 2], Input3"

• Correct syntax: [_
InputNames]="Input1,
[Input 2], Input3"

Invalid _InputNames
value: Zero-length names not
allowed.

An input variable is missing
from the _InputNames
parameter value or an extra
comma was included. This
can occur if you updated the
metric’s _InputNames
parameter.

Update the metric expression for a
metric to ensure that each input
variable is included and multiple
commas are not included
sequentially. For example:

• Incorrect syntax: [_
InputNames]="Input1,,
Input3"

• Correct syntax: [_
InputNames]="Input1,
Input2, Input3"

Invalid _InputNames
value: Missing closing
bracket.

An opening bracket ([) does
not have a matching closing
bracket (]) within the _
InputNames parameter
value. This can occur if you
updated the metric’s _
InputNames parameter.

Update the metric expression for a
metric to ensure that matching
opening and closing brackets are
included. For example:

• Incorrect syntax: [_
InputNames]="Input1,
[Input 2, Input3"

• Correct syntax: [_
InputNames]="Input1,
[Input 2], Input3"

Invalid _InputNames
value: Number of names
does not match the actual
count.

The number of input
variables included in the _
InputNames parameter
value is different than the R
script. This can occur if you
updated the metric’s _
InputNames parameter.

Ensure that the number of input
variables specified is consistent with
the specified R script. You can
review the metric expression in the R
script to confirm the number of input
variables before any changes were
done for the metric (see Retrieving
the metric expression, page 16).

INDEX

A

analytic implementation in R 22

B

best practices

creating a data frame 29

dual execution mode 28

error handling 25

example of a robust R script 34

installing an R package 30

making the R script robust 24

R global environment 33

upgrading R 33

C

Comprehensive R Archive Network
(CRAN) 21

D

dashboard

example of analysis metrics in 17

data frame creation 29

deploying an R script 20

deployR utility 6, 21

deploying R scripts 38

using 37

E

error

locating messages 43

troubleshooting 43

examples

dual execution mode 28

R analytic deployment 19

R package installation 31

R script to save the R workspace 27

R script with the tryCatch
function 26

robust R script 34

simple R script 25

© 2017, MicroStrategy Inc. 53

R Integration Pack User Guide

I

image

adding R images to
MicroStrategy 18

creating R images 23

storing R images 8

installing

MicroStrategyR Package 21

RScript Functions Installer 10

RScript Functions Installer
(UNIX) 11

RScript Functions Installer
(Windows) 10

M

metric 5, 15

including an R script 17

retrieving expression 16

MicroStrategy

adding R images 18

including an R script 17

installing 7

metric expression 16

R Integration Pack 4

R script location 16

MicroStrategyR Package for R 6

deployR utility 21

installing 21

P

parameters for an R script 30

Predictive Model Markup Language
(PMML) 31

prerequisites for the R Integration
Pack 7

project, adding R scripts to 13

R

R 4

adding images to MicroStrategy 18

creating images 23

environment prerequisites 9

global environment 33

installing 9

installing a package 30

MicroStrategyR Package 6

mstr.ErrMsg variable 25

saving the workspace 27

storing images 8

upgrading 33

variables 30

R (analytics) integration with
MicroStrategy 5, 15

R Integration Pack 4

components 6

prerequisites 7

R script

accessing in MicroStrategy 16

adding to an existing project 13

analytic deployment example 19

best practices 24

deploying 20

using the deployR utility 38

example

robust 34

54 © 2017, MicroStrategy Inc.

R Integration Pack User Guide

simple 25

folder 39

implementing an analytic 22

including in a metric 17

parameters 30

repository 8

retrieving metric expression 16

repository

for R images 8

for R scripts 8

RScript Functions 6, 10

RScript Functions Installer

installing 10

installing on UNIX 11

installing on Windows 10

post-installation requirements 13

S

saving the R workspace 27

T

troubleshooting 43

installation 44

locating error messages 43

R integration in MicroStrategy 49

R script development 45

troubleshooting function code using the
tryCatch function wrapper 25

U

upgrading R 33

V

variable

mstr.ErrMsg 25

R 30

© 2017, MicroStrategy Inc. 55

	1. Overview of the R Integration Pack
	2. Installing and Configuring the R Integration Pack
	Installing MicroStrategy products
	Installing R
	Installing the RScript functions
	Upgrading MicroStrategy Analytics Enterprise projects

	3. Performing statistical analysis
	Retrieving the metric expression
	Making the R script available
	Including the R script in a metric

	4. Developing R Analytics for MicroStrategy
	Installing the MicroStrategyR Package for R
	Implementing the analytic in R for use in MicroStrategy
	Best practices: Making the R script robust
	Preparing your analytic for MicroStrategy: the deployR utility

	5. Troubleshooting
	Locating error messages
	Troubleshooting your installation
	Troubleshooting the development of R scripts
	Troubleshooting R integration in MicroStrategy

	Index

